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Computer Algebra

• Systems with millions of users	


• A scientific area: effective 
mathematics and their 
complexity	


• 30 years of progress in 
mathematical algorithms
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Thesis in this talk: linear differential equations are a good data-structure.



Menu dégustation

1. Equations as a data-structure	


2. Guess & Prove combinatorial walks	


3. Proofs of identities	


4. Sums and Integrals	


5. Numerical evaluation via the Taylor series	


6. Chebyshev expansions



I. Equations as a 
data-structure

erf := (y00 + 2xy

0 = 0, ini. cond.)

basis of the gfun package

http://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/


Dynamic Dictionary of 
Mathematical Functions

• User need	


• Recent algorithmic progress	


• Maths on the web

http://ddmf.msr-inria.inria.fr/

Heavy work by F. Chyzak



Demonstration

http://ddmf.msr-inria.inria.fr/


II. Guess & Prove 
Combinatorial Walks



Gessel's walks in the 1/4-plane

G(x, y, t) :=
X

n�0

X

i,j

fi,j;nx
i
y

j
t

n

• 79 inequivalent step sets (MBM & Mishna);	

• long history of special cases;	

• Gessel’s was left;	

• conjectured not soln of LDE.

Thm. [Bostan-Kauers 2010] 
G is algebraic!

Computer-driven discovery & proof.



Computation

G(x, y, t) :=
X

n�0

X

i,j

fi,j;nx
i
y

j
t

n

• Compute G up to t1000;	

• conjecture LDE with 1.5 million coeffs!	

• check for sanity (bit size, more coeffs, Fuchsian, p-curvature);	

• oh!	

• conjecture polynomials (deg ≤ (45,25,25), 25 digit coeffs);	

• Proof by (big) resultants.



The 79 cases: finite and infinite groups

79 step sets

23 admit a finite group
[Mishna’07]

56 have an infinite group
[Bousquet-Mélou-Mishna’10]

all are holonomic
19 transcendental
[Gessel-Zeilberger’92]

[Bousquet-Mélou’02]

4 are algebraic
(3 Kreweras-type + Gessel)

[BMM’10] + [B.-Kauers’10]

�! all non-holonomic
• [Mishna-Rechnitzer’07] and

[Melczer-Mishna’13] for 5 singular cases

• [Kurkova-Raschel’13] and

[B.-Raschel-Salvy’13] for all others

20/45

[Slide borrowed from A. Bostan]



Proving no LDE exists

• log(n), na (a∉Z), pn, e√n, Γ(n√2),...  
by their asymptotic behavior,  
or that of their generating function  
(with P. Flajolet & S. Gerhold).
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• walks in the 1/4-plane  
(with A. Bostan & K. Raschel)  
  
   � :=

X

(i,j)2S

x

i
y

j

c :=
@2�
@x@yq

@2�
@x2 · @2�

@y2

(x
0

, y
0

)

arccos(c)/⇡ 62 Q



III. Proofs of Identities



Proof technique
> series(sin(x)^2+cos(x)^2-1,x,4);

O(x4)

Why is this a proof?

1. sin and cos satisfy a 2nd order LDE: y’’+y=0;	

2. their squares and their sum satisfy a 3rd order LDE;	

3. the constant -1 satisfies y’=0;	

4. thus sin2+cos2-1 satisfies a LDE of order at most 4;	

5. Cauchy’s theorem concludes.

Proofs of non-linear identities by linear algebra!

f satisfies a LDE 
⟺ 

f,f ’,f ’’,… live in a  
finite-dim. vector space



Example: Mehler’s identity for Hermite polynomials

1X

n=0

H
n

(x)H
n

(y)
un

n!
=

exp

⇣
4u(xy�u(x2+y

2))
1�4u

2

⌘

p
1� 4u2

1. Definition of Hermite polynomials:  
recurrence of order 2;	


2. Product by linear algebra: Hn+k(x)Hn+k(y)/(n+k)!, k∈ℕ 
generated over    (x,n) by  
 
 
→ recurrence of order at most 4;	


3. Translate into differential equation.

Q
Hn(x)Hn(y)

n!
,
Hn+1(x)Hn(y)

n!
,
Hn(x)Hn+1(y)

n!
,
Hn+1(x)Hn+1(y)

n!



Guess & prove continued fractions 
(with S. Maulat)

arctan x =
x

1+
1
3x

2

1+
4
15x

2

1+
9
35x

2

1+ · · ·

1. Differential equation produces first terms (easy):

2. Guess a formula (easy): an =
n2

4n2 � 1

3. Prove that the CF with these an satisfies the 
differential equation.

No human intervention needed.

Taylor Continued 
fraction



Automatic Proof of the guessed CF

• Aim: RHS satisfies (x2+1)y’-1=0;	

• Convergents Pn/Qn where Pn and Qn satisfy a LRE  

(and Qn(0)≠0); 	

• Define Hn:=(Qn)2((x2+1)(Pn/Qn)’-1);	

• Hn is a polynomial in Pn,Qn and their derivatives;	

• therefore, it satisfies a LRE that can be computed;	

• from it, Hn=O(xn) visible, ie lim Pn/Qn soln;	

• conclude Pn/Qn➝ arctan (check initial cond.). 

arctan x
?
=

x

1+
· · ·

1+
n2

4n2�1x
2

1+ · · ·

More generally: this guess-and-proof approach applies 
to CF for solutions of (q-)Ricatti equations	

→ all explicit C-fractions in Cuyt et alii. 



IV. Sums and Integrals



Creative telescoping

Input: equations 
(differential for f or 
recurrence for u).	


Output: equations for the 
sum or the integral.

Method: integration (summation) by parts and differentiation 
(difference) under the integral (sum) sign

Example (with Pascal’s triangle):

Algorithms: reduce the search space.

I(x) =

Z
f(x, t) dt =? or S(n) =

X

k

u(n, k) =?

u(n, k) =

✓
n

k

◆
def. by

⇢✓
n+ 1

k

◆
=

n+ 1

n+ 1� k

✓
n

k

◆
,

✓
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◆
=

n� k
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✓
n

k

◆�
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X

k

✓
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k

◆
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X

k

✓
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◆
�
✓
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◆
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✓
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◆
�
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✓
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◆
= 2S(n).



Telescoping Ideal

• hypergeometric 
summation:  
dim=1 + param. Gosper. 
[Zeilberger]	


• holonomy: restrict int. 
by parts to  
and Gröbner bases. 
[Wilf-Zeilberger]	


• finite dim, Ore algebras 
& GB (with F. Chyzak)	


• infinite dim & GB  
(with F. Chyzak & M. Kauers)	


• rational f and restrict to 
                            in 
very good complexity 
(with A. Bostan & P. Lairez)	
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Tt(f) :=
⇣
Ann f + @tQ(x, t)h@

x

, @ti| {z }
int. by parts

⌘
\ Q(x)h@

x

i| {z }
di↵. under

R
.

Q(x)h@
x

, @ti
Q(x)[t, 1/den f]h@

x

, @ti



Multiple binomial sums	

(with A. Bostan & P. Lairez)

Def. Combination of binomial coefficients, geometric 
sequences, +, x, multiplication by scalars,  
affine changes of indices and ∑.

Thm. The generating series is the integral of a rational 
function that can be constructed automatically.

→ whence an efficient summation algorithm using the previous algo.

Ex. (Apéry) A(n) =
nX

k=0

✓
n

k

◆2✓n+ k

k

◆2

7!
I

dt1 ^ dt2 ^ dt3
t1t2t3(1� t1t2 � t1t2t3)� (1+ t1)(1+ t2)(1+ t3)z

7! LDE 7! (n+ 1)3A(n) + (· · · )A(n+ 1) + (n+ 2)2A(n+ 2) = 0.

More at Pierre’s PhD defense on Nov. 12.



V. Numerical evaluation 
via the Taylor series

From large integers to precise numerical values



Numerical evaluation of solutions of LDEs

1. linear recurrence in N for the first sum (easy);	

2. tight bounds on the tail (e.g., work with M. Mezzarobba);	

3. no numerical roundoff errors.

f solution of a LDE with coeffs in Q(x) (our data-structure!)

f(x) =
NX

n=0

anx
n

| {z }
fast evaluation

+
1X

n=N+1

anx
n

| {z }
good bounds

The technique used for fast evaluation of constants like 

1

⇡
=

12

C3/2

1X

n=0

(�1)n(6n)!(A+ nB)

(3n)!n!3C3n

with A=13591409, 
B=545140134,  

C=640320.

Code available: NumGfun [Mezzarobba 2010]

Principle:

http://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/


Binary Splitting for linear 
recurrences (70’s and 80’s)

• n! by divide-and-conquer:  
 
 
Cost: O(n log3n loglog n) using FFT	


• linear recurrences of order 1 reduce to 

• arbitrary order: same idea, same cost (matrix factorial):

n! = n⇥ · · ·⇥ dn/2e| {z }
size O(n log n)

⇥bn/2c ⇥ · · ·⇥ 1| {z }
size O(n log n)

p!(n) := (p(n)⇥ · · ·⇥ p(dn/2e))⇥ (p(bn/2c)⇥ · · ·⇥ p(1))

ex: satisfies a 2nd order rec, computed via

✓
en
en�1

◆
=

1

n

✓
n+ 1 �1
n 0

◆

| {z }
A(n)

✓
en�1

en�2

◆
=

1

n!
A!(n)

✓
1
0

◆
.

en :=
nX

k=0

1

k!



Analytic continuation

Ex: erf(π) with 15 digits:  
0 ������!

200 terms
3.1416 �����!

18 terms
3.1415927 �����!

6 terms
3.14159265358979

arctan(1+i)

Again: computation on integers. No roundoff errors.

Compute                                     as new initial 
conditions and handle error propagation:

f(x), f 0(x), . . . , f(d�1)(x)



VI Chebyshev expansions

Taylor Chebyshev



From equations to operators
(n↦n+1) ↔ S	

mult by n ↔ n	


composition ↔ product	

Sn=(n+1)S

Taylor morphism: D ↦ (n+1)S; x ↦ S-1  

produces linear recurrence from LDE

Ore (1933): general framework for these non-commutative 
polynomials.  
Main property: deg AB=deg A+deg B.  
Consequence 1: (non-commutative) Euclidean division  
Consequence 2: (non-commutative) Euclidean algorithm.

d/dx ↔ D  
mult by x ↔ x	


composition ↔ product	

Dx=xD+1

erf: D

2 + 2xD 7! (n+ 1)S(n+ 1)S+ 2S

�1(n+ 1)S = (n+ 1)(n+ 2)S2 + 2n



Ore fractions (Q-1P with P&Q operators)

Application: extend Taylor morphism to Chebyshev expansions

Thm. (Ore 1933) Sums and products reduce to that form.

Taylor  
xn+1=x·xn, (xn)’=nxn-1 	


↔ X:=S-1, D:=(n+1)S

Prop. [with A. Benoit] If y is a solution of L(x,d/dx), then its 
Chebyshev coefficients annihilate the numerator of L(X,D).

erf: D

2 + 2xD 7! (2(S�1 � S)�1
n)2 + 2

S+ S

�1

2

2(S�1 � S)�1
n

= pol(n, S)�1(2(n+ 1)(n+ 4)S4 � 4(n+ 2)3S2 + 2n(n+ 3))

Efficient numerical use: arXiv:1407.2802

Chebyshev	

2xTn(x)=Tn+1(x)+Tn-1(x),  

2(1-x2)Tn’(x)=-nTn+1(x)+nTn-1(x)	

↔ X:=(S+S-1)/2,  

D:=(1-X2)-1n(S-S-1)/2=2(S-1-S)-1n.

http://arxiv.org/abs/1407.2802


Next steps: FastRelax (starting this Fall)
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Computer Algebra Formal proofs

Computer 
Arithmetic

y

00 + 2xy

0 = 0 + ini. cond.

5 teams, 4 years

double erf(double x) {…}



Conclusion

• Linear differential equations and recurrences are a great 
data-structure;	


• Numerous algorithms have been developed in computer 
algebra;	


• Efficient code is available;	

• More is true (creative telescoping, diagonals,…);	

• More to come for Mireille and her followers.

Bravo Mireille !


